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The kinetics of formation of austenite from ferrite and cementite mixtures has been 
modelled by assuming the local equilibrium at the planar phase interfaces. The exact 
solutions to the diffusion equations governing the volume diffusion of carbon in austenite 
and ferrite are presented. The concurrent motions of the two interfaces are calculated via 
solving a set of transcendental equations derived from the flux balance conditions. At low 
isothermal transformation temperatures, it is found that the time required for 
reaustenitization is slightly greater than the time previously calculated with no diffusion of 
carbon in ferrite. 

1. Introduction 
The experimental work on the kinetics of austenite 
formation predates much of the attention on the kinet- 
ics of austenite decomposition (forward transforma- 
tion). Hultgren [1] analysed isothermal growth of 
austenite and disappearance of ferrite in considerable 
detail. His method was later used by Davenport and 
Bain in determining the time-temperature-trans- 
formation (TTT) diagrams for steels [2 I. Roberts and 
Mehl [3], in addition to the review of the work prior 
to 1940, reported a study of austenite formation from 
ferrite/pearlite and ferrite/spheroidite. 

Kinetics of the nucleation and growth of austenite 
are a strong function of starting microstructure and 
alloy composition [3-7]. For ferrite/cementite mix- 
tures (e.g. heavily tempered martensite, spheroidized 
pearlite) being the starting microstructure which is 
of interest to us here, austenite first forms at 
ferrite/cementite interfaces [8]. In particular, when the 
average carbon content is low, austenite rapidly en- 
velops spherical cementite particles, so that the geo- 
metry becomes spherically symmetrical. 

The reader should note that the form Of the 
time-temperature-transformation (TTT) diagram for 
reaustenitization is different from the classical C-curve 
describing the forward transformation, i.e. when aus- 
tenite decomposes to allotriomorphic ferrite, pearlite, 
bainite etc. Since both the driving force and the dif- 
fusion coefficient increase with increasing temper- 
ature, the TTT diagram for reaustenitization has the 
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forria of a half-C [9-12], so that the time required for 
reverse transformation decreases monotonically with 
increasing temperature. 

Theoretical analyses [3, 8, 13J of the rate of forma- 
tion of austenite from various aggregates of ferrite and 
cementite usually assume that the rate controlling step 
is the diffusion of carbon through austenite. As was 
recognised by Hultgren in 1929 [1], the growth of 
austenite requires the simultaneous movement of two 
interphase boundaries: the 0/y as well as the y/a 
interface (see Fig. 1). The models emphasize the im- 
portance of cementite precipitates in aiding the nucle- 
ation of austenite. Hillert [13] identified distinct 
regimes for the process of reaustenitization from fer- 
rite/cementite aggregates, the applicability of each 
depending upon cementite particle size and spacing, 
temperature and alloy composition. In particular, 
when the distance between particles of cementite is 
Very large (i.e. when the mean carbon content is low), 
the cementite particles rapidly become engulfed by 
austenite, after which time further growth of austenite 
is controlled by carbon diffusion in the austenite shell. 
In all cases considered so far, full chemical equilibrium 
in the close vicinity of the moving interfaces (the local 
equilibrium hypothesis) has been applied with strong 
experimental support. 

In most of the early work, the Laplacian form of the 
diffusion field of the diffusing species in austenite, i.e. 
the steady state assumption, was applied [3, 13]. Re- 
cently, Akbay et al. [14] presented analytical and 
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Figure 1. Schematic diagram of interstitial solute concentration 
profiles. Dashed line represents the constant value employed in the 
previous analysis in which no diffusion of carbon in ~ was con- 
sidered. 

numerical solutions to the transient problem which 
revealed the fact that the steady state analysis is only 
true at low isothermal transformation temperatures. 
As part of a systematic de,elopement of reaustenitiza- 
tion models, it is reasonable to investigate the effect of 
diffusion of carbon in ferrite in addition to austenite 
on the overall efficiency of the model. The diffusion 
equations are solved ~n ferrite and austenite (the grow- 
ing phase) subject to flux balance conditions at the 0/y 
and y/~ boundaries. 

2. Mathematical  description 
of the problem 

In order to model reaustenitization from ferrite/ 
cementite mixtures, it is necessary to simulate the 
austenite nucleation event by introducing a thin layer 
of austenite at the ferrite/cementite boundary. The 
following additional simplifying assumptions are 
made in the present work. 

(i) Local equilibrium is assumed to apply at the 
cementite/austenite (0/y) and austenite/ferrite 
(y/~) phase boundaries; 

(ii) the Fe-C binary system is considered, to avoid 
the complexity due to the diffusion of substitu- 
tional solutes; 

(iii) the diffusion of carbon in cementite is ignored, 
since cementite is near stoichiometric; 

(iv) the concentration dependence of the diffusivity 
of carbon in austenite is taken into account by 
employing a weighted average value. A more 
elaborate analysis, by the authors, taking the 
full concentration dependence into account can 
be found elsewhere [15]. 

Under these assumptions, the process is controlled by 
the diffusion of carbon in austenite and ferrite. The 
variation of Cv, the carbon concentration in austenite, 
with time t and distance r (measured outward from the 
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centre of the cementite block) is given by 

0c, 0 (0c_,) 
5t - r " 0 r  rn ~ r ]  (1) 

where/3~ is the weighted average diffusivity of carbon 
in austenite and n is an integer which takes a value of 
0 for planar, 1 for cylindrical, 2 for spherical geomet- 
ries respectively. Similarly, the variation of C~, the 
carbon concentration in ferrite, with time t and dis- 
tance r, satisfies 

et - r n 5 r \  0r / (2) 

w h e r e / ) c  is the diffusivity of carbon in ferrite. 
The flux balance condition at the 0/7 interface is 

given by 

(Ce - c~'% dr-2' - OVc ( O C , )  (3) 

and at the y/~ interface by 

, , d r , ,  (~C,~  
(C w" - C . )  dt = - / ~  - -  \ er/ =G 

+ D c \  5r /~=~; (4) 

where roy {t} and r,,  {t} are the instantaneous positions 
of the 0/y and y/~ interfaces respectively. The terms 

3'~ yat C v and C, represent the concentrations of carbon in 
austenite at the y/0 and y /a  interfaces. Also the term 
C~' denotes the carbon concentration in ferrite at the 
y/ct interface. The initial boundary conditions are ex- 
pressed by 

= ro  (5) 

= ro  (6) 

and 
C = Co for O ~ r < ~ r o  (7) 

where ro is the initial size of the cementite block. Local 
equilibrium at the O/y and y /a  interfaces implies 

+ 
C, = C~ ~ a t r  = ro, (8) 

C, = C~" a t r  = r~  (9) 

C~ = C2' a t r  = r, + (10) 

C~ = 0 a t r  = +oo  (11) 

In this work, we show that it is possible to obtain 
exact solutions to Equations 1 and 2 subject to 3-11 
for the case n = 0 (i.e. planar geometry). 

2.1 Exact  so lu t i ons  
For planar geometry, Boltzmann's transformation 
q = ( r -  ro)(Dot) -l /z ,  where Do is a normalization 
constant and ro is the initial size of the cementite 
particle, reduces Equation 1 to an ordinary differential 
equation of the form 

dSC, 
q dC, _ D~ (12) 
2 dq dqq~ 

where D~ = DYe/Do. In addition, Equation 2 will be 
transformed as 

q dC~ d2C, 
- 03) 2 dq dq 2 



where Dc = D~/Do. Similarly the flux balance condi- 
tions 3 and 4 are transformed into 

(Co - C '~ rl~ = Drc ( d C ~  (14) 
' '  T \ d n / n  =%,~ 

(C~ ~ -  C:') rl'~ - DYc(dC'~ 
A ~ 

, (dC~'~ (15) 
+ Dc \ dq/,n=n4 = 

The solution of Equation 12 can be written as 

C, = A exp - 7 ~ c  dq + B (16) 
d r i o t  

where the constants A and B are found by applying 
the boundary conditions 8 and 9 to give 

A = (CW~ - -  Cw~ B = c r v O  (17) 

fn~exn -- dr 1 
,J Tle~, 1 ~ 

Similarly the solution to Equation 13 will be 

Ca = E exp - 7~c dn + F (18) 

where the constants E and F are found by applying the 
boundary conditions 10 and 11 to give 

E = 2 , f = C~ r (19) 

n,= exp - dq 

The interface flux balance conditions 14 and 15 can 
now be written as 

The positions of the interfaces can be obtained by 
simultaneous solution of the coupled transcendental 
Equations 22 and 23 for dimensionless interface para- 
meters rley and rlr~. 

2.2  L i m i t i n g  c a s e  
In this section the authors wish to investigate the 
consequences of the competition between solute diffu- 
sion in 7 and a. It should be pointed out 
that under favourable conditions the fluxes of the 
diffusing species across the interface may balance pre- 
venting it from being migrated. In order to assess the 
viability of this phenomenon for the Fe -C  binary 
system the following mathematical analysis will be 
performed. 

Suppose the dimensionless parameter for y/~ 
interface, fir=, is identically zero then it is clear that 
one can reduce the Equation 23 into the following 
form. 

__ (4D~)  '/2 (C~ ~ -  C~ e) 

[erfc { ~ } -  1] 

= C~ ~ (24) 

Substituting the above equation into Equation 22 
yields 

C yO - -  - C~ ) r  M - - ( ~ ) l / 2 C : ~ e x p {  - q~r~4D~j 

( 2 s )  

(7,~e~ qov (Co - ~.~,  ~- 
Dr ~'rY~ c~,~, - -  C~ 0) 

lqyez 

~n~ exp 4 ~  c drl 
exp(  4D r j (20) 

C~% qr= ( c ;  ~ _ = , . ~  
D~(C; ~ - c7) f - ~ , \ 1  
- -  - -  ~ exp 

~+Uc ) 

c , ~  2 - exp -- q ~  

~n,~ exp -- drl 

(21) 

Using the definition of the error function erf{d~} = 
1/2 ~, 2/(x) ~ o exp { -  ~2 } d~, Equations 20 and 21 can be 

rearranged to yield 

- C~  ) r  M = 

erfc [~ Tl~ J~ -- erfc t2(D~)c)'12 t 4D~J 

(22) 

( c 7  - ~ = - 
(c7 - c> { nS ; 

I { rl0v } ~ qr~ "~exp - 4 D ~ J  
erfc ~ - erfc[2(D~)l/2j 

erfcJ" rlr~ ~exp - 4D~J 
~.2(D~) 1/2 J 

(23) 
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Now a new variable, fl0v, may be defined as equal to 
qov/(D~c) 112 to rewrite Equations 24 and 25 as 

- ( c 7 - c ;  ~ = t ~ )  c~Leric~-~- 

C yO - - -  C ~  )qo~, = 

(26) 

(27) 

Hence the interface parameter flo7 and the ratio of 
carbon diffusivity in ferrite to that in austenite, 

~x Y 
De~De, can be calculated by simultaneously solving 
the Equations 26 and 27. The solution will provide the 

~x T required magnitude of De~De to stop the migration of 
the 7/~ interface. 

3. Results and discussion 
The results of the theory developed in the previous 
sections will be illustrated here. The equilibrium inter- 
stitial solute concentrations corresponding to the 
~/(~ + y), (~ + y)/y and y/(y + 0) phase boundaries 
for the Fe-C binary system are calculated by the 
numerical minimization of Gibbs energy using the 
sublattice model [16, 17] with associated data [18]. 
Equations 22 and 23 can be solved for a pair of dimen- 
sionless parameters, q0~ and Vlr~ by specifying the 
transformation temperature which in turn dictates the 
local equilibrium concentrations at the interfaces. 
Mole fractions are chosen for the carbon concentra- 
tions in the phases considered. 

The constant for the diffusivity of carbon in 
austenite (/)~) is evaluated taking the weighted 
averages of the concentration dependent ones. The 
numerical evaluation as a function of concentration 
and temperature follows Bhadeshia's method [19] 
based on references [20, 21]. On the other hand, 
the method proposed by McLellan et al. [22,23] 
is adopted for the calculation of the diffusion coeffic- 
ient of carbon in ferrite. Table I lists the calculated 
values of Dc and /)~ for various transformation 
temperatures. 

Figs 2 and 3 illustrate the variation of dimension- 
less interface parameters, q0v and qw, against isother- 
mal transformation temperatures. Some discussion is 
warranted concerning the difference between the two 
calculations with or without employing the carbon 
diffusion in ~. The solid lines are the results of the 
analysis for which the carbon diffusion in a is ignored. 
The retardation of the migration of the y/~ interface 
due to relatively slower rearrangement of carbon 

T A B L E  1 Calculated diffusivities of carbon in ~ and y. 

Temperature ~ b c  ( m 2 s - l )  x 10 -1~ /5~ (m2s-1)  x 10 -12 

730 1.2768 1.0850 
750 1.5762 1.4469 
800 2.5797 2.9904 
850 4.0422 6.1155 
900 6.0978 12.251 

atoms inside the ez region compared to non-diffusion 
case is observed. This in turn causes an acceleration of 
the O/y interface due to rapid carbon rejection from 
the 8 into y. 

As was discussed earlier, it is possible to calculate 
the ratios of the diffusivities of carbon in ez to that in y. 
It is particularly important to consider a limiting case 
at which the y/~ interface may have ceased to move. 
Typical values of the calculated ratio via solving the 
Equations 26 and 27 are tabulated in Table II. It must 

- -eX - - 3 t  
be stressed that the actual values of De~De can never 
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Figure 2. The variation of the 0/y interface parameter  tl0v with 
isothermal transformation temperature for the F e - C  system. 
Planar  geometry. Solid curve: with no diffusion of carbon in ez. 
Dashed curve: with diffusion of carbon in ez. 
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Figure 3. The variation of the u interface parameter  q ~  with 
isothermal transformation temperature for the F e - C  system. Planar  
geometry. Solid curve: with no diffusion of carbon in cc Dashed 
curve: with diffusion of carbon in ~. 
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T A B L E I I Calculated ratios of diffusivities of carbon in ~ to that 

in 7- 

Temperature ~ -~ -v Dc/D c (m 2 s -  ~) 

730 6.2940 • 102 
750 5.4941 x 103 
800 3.0795 x 104 
850 1.4240x 105 
900 4.6907 x 106 

steels considering the average 0 particle size as 1 pro. 
The dashed curves represent various degrees of reaus- 
tenitization evaluated by the analysis presented here 
while the solid curves represent the case where diffu- 
sion of carbon in ~ is ignored. It should be emphasized 
that there is no great deal of difference between the 
two analyses at high temperatures but the one present- 
ed here predicts a slight delay in overall transforma- 
tion kinetics for low temperatures, 
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, 4. Conclusion 
The kinetics of formation of austenite from ferrite and 
cementite mixtures has been modelled. The local equi- 
librium at the phase interfaces was assumed. In addi- 
tion, the process was assumed to be controlled by 
volume diffusion of carbon in both austenite and fer- 
rite. The exact solutions to the diffusion equations 
governing the volume diffusion of carbon in austenite 
and ferrite were presented. The concurrent motions of 
the two interfaces were calculated via solving a set of 
transcendental equations derived from the flux bal- 
ance conditions. 

At low isothermal transformation temperatures, it 
was found that the time required for reaustenitization 
is slightly greater than the time previously calculated 
with no diffusion of carbon in ferrite. This is attributed 
to the higher magnitudes of the ratio of diffusivity of 

6 carbon in ferrite to that in austenite at low trans- 
formation temperatures. The diffusion of carbon al- 
lowed to occur in the ferritic region retards the motion 
of the 7/~ interface while accelerating the 0/7 inter- 
face - the overall transformation rate being reduced. 

Figure 4. Reverse TTT diagram, Fe-0.4 wt % C steel, ro = 1 gin. 
Solid curve: with no diffusion of carbon in c~. Dashed curve: with 
diffusion of carbon in ~. 
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Figure 5. Reverse TTT diagram, Fe 0,8 wt % C steel, ro = 1 gin. 
Solid curve: with no diffusion of carbon in a. Dashed curve: with 
diffusion of carbon in c~. 

be as high as the ones that are calculated considering 
the limiting case. 

Figs 4 and 5 depict the reverse TTT diagrams cal- 
culated for Fe-0.4wt %C and Fe-0.8wt %C binary 
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